Background: Cadmium-induced reproductive toxicity significantly threatens male fertility, primarily through oxidative stress and alterations in testicular proteins. Objective: This study investigates omega-3 fatty acids as a potential therapeutic strategy to counteract cadmium-induced testicular damage. Methods Adult male Wistar rats were exposed to cadmium chloride, followed by oral omega-3 fatty acid supplementation. Testicular tissues were analyzed for oxidative stress markers (malondialdehyde, MDA), antioxidant enzyme activities (Superoxide dismutase (SOD), catalase (CAT), gluthanione peroxidase (GPx), and key reproductive proteins (acrosin, clusterin, osteopontin, annexin-A2, kallikrein-1) using) enzyme linked immunoassay (ELISA and spectrophotometry. Data were analyzed using appropriate statistical tools. Results: Omega-3 supplementation significantly (p < 0.05) reduced MDA levels, restored antioxidant enzyme activities, and preserved testicular protein integrity. Proteomic analysis revealed modulation of proteins involved in oxidative stress response, apoptosis, and spermatogenesis. Conclusion: These findings suggest that omega-3 fatty acids may serve as a promising therapeutic agent for mitigating cadmium-induced reproductive toxicity and preserving male fertility. Incorporating omega-3 into dietary interventions may offer an effective strategy against heavy metal-induced testicular damage.
Published in | Pathology and Laboratory Medicine (Volume 9, Issue 1) |
DOI | 10.11648/j.plm.20250901.12 |
Page(s) | 12-31 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2025. Published by Science Publishing Group |
Cadmium Exposure, Sperm Dysfunction, Testis, Histomorphology, Wistar Rat
Groups | Sperm Count (106/ml) | Active Motility (%) | Sluggish Motility (%) | Non viable (%) | Viable sperm cells (%) | Normal Morphology (%) | Abnormal Morph (%) |
---|---|---|---|---|---|---|---|
Group 1 | 118.25±10.94b | 80.00±7.35c | 11.25±4.73a | 8.75±3.14a | 91.25±3.15b | 72.50±4.79b | 27.50±4.78a |
Group 2 | 82.25±26.51ab | 40.00±9.35b | 33.75±6.25a | 26.25±3.75a | 62.50±9.68ab | 53.75±4.27b | 46.25±4.26a |
Group 3 | 79.00±28.48ab | 22.50±8.50ab | 25.00±9.35a | 27.50±9.68a | 52.25±18.87ab | 38.75±14.49ab | 36.25±13.75a |
Group 4 | 62.00±22.37a | 18.75±7.46ab | 26.25±10.68a | 30.00±13.38a | 28.75±9.66a | 35.00±11.73ab | 40.00±13.38a |
Group 5 | 60.25±36.30a | 6.25±4.73a | 25.00±14.43a | 18.75±11.25a | 13.75±8.50a | 6.25±3.75a | 58.33±29.20a |
F- value | 4.13 | 14.13 | 0.701 | 0.880 | 7.25 | 7.46 | 0.640 |
P-value | 0.019 | 0.001 | 0.603 | 0.499 | 0.012 | 0.002 | 0.640 |
Groups | SC (106/ml) | AM (%) | SM (%) | NVSC (%) | VSC (%) | NM (%) | ABM (%) |
---|---|---|---|---|---|---|---|
Group 1 | 254.50±20.90bc | 68.75±5.15bc | 13.75±4.27ab | 17.50±1.44b | 82.50±1.44abcd | 61.25±4.27b | 38.75±4.27b |
Group 2 | 100.00±8.16ab | 28.75±5.91a | 36.25±5.54bcd | 32.50±4.79c | 70.00±9.13ab | 61.25±5.15b | 38.75±5.15b |
Group 3 | 114.00±14.59ab | 25.00±2.04a | 27.50±4.79abcd | 47.50±5.20d | 77.50±7.50abcd | 32.50±5.95b | 67.50±5.95c |
Group 4 | 23.75±5.54a | 17.50±3.23a | 41.25±4.27cd | 41.25±1.25cd | 71.25±5.15abc | 21.25±3.75a | 78.75±3.75c |
Group 5 | 23.75±10.28a | 13.75±2.39a | 45.00±5.40c | 41.25±4.73cd | 62.50±4.79a | 13.75±2.39a | 86.25±2.39c |
Group 6 | 279.25±21.75bc | 80.75±4.15bc | 13.75±5.15ab | 5.50±1.66ab | 94.50±1.66d | 72.50±4.33bc | 27.50±4.33ab |
Group 7 | 358.75±44.18c | 90.00±3.54c | 5.00±2.04a | 5.00±2.04ab | 95.00±2.04d | 86.25±5.54c | 13.75±5.54a |
Group 8 | 173.00±32.18abc | 80.00±4.08bc | 11.25±3.15ab | 8.76±1.26ab | 88.75±3.15bcd | 87.50±3.23c | 12.50±3.23a |
Group 9 | 69.25±16.59ab | 68.75±6.57bc | 22.50±6.29abcd | 8.75±1.24ab | 91.25±1.25cd | 62.50±4.79b | 37.50±4.79b |
Group 10 | 219.00±73.52abc | 76.25±4.27bc | 15.00±3.54ab | 8.77±1.25ab | 91.25±1.25cd | 65.00±2.04b | 35.00±2.04b |
group 11 | 171.00±18.23abc | 63.75±8.98b | 28.75±9.66abcd | 7.50±1.44ab | 92.50±1.44d | 68.75±3.75bc | 31.25±3.75ab |
Group 12 | 366.58±28.82c | 77.50±4.33bc | 17.50±4.33abc | 5.00±0.01ab | 91.25±3.75cd | 75.00±2.89bc | 25.00±2.89ab |
Group 13 | 122.00±53.69ab | 75.00±4.56bc | 17.50±4.79abc | 7.50±1.44ab | 92.45±1.45d | 72.50±3.23bc | 27.50±3.23ab |
Group 14 | 192.50±34.34abc | 83.75±5.54bc | 8.75±2.39a | 7.50±3.23ab | 92.50±3.23d | 72.50±1.44bc | 27.50±1.44ab |
Group 15 | 247.00±97.69bc | 88.75±6.25bc | 7.50±4.33a | 2.50±0.50a | 97.50±2.50d | 87.50±5.95c | 12.50±5.95a |
F- value | 17.24 | 28.59 | 6.26 | 34.05 | 7.03 | 30.38 | 30.39 |
P-value | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Groups | HD (%) | ND (%) | TD%) | AI (%) | SDI (%) | TZI | Volume (ml) |
---|---|---|---|---|---|---|---|
Group 1 | 17.50±4.33abc | 11.25±1.25abcd | 10.00±0.01abc | 82.50±4.33bc | 0.39±0.04b | 0.22±0.04ab | 3.00±0.54ab |
Group 2 | 27.50±3.23cd | 2.50±1.44a | 8.75±2.39abc | 72.50±3.23bc | 0.38±0.05b | 0.22±0.04ab | 1.27±0.26ab |
Group 3 | 37.50±5.95d | 13.75±2.39bcd | 16.25±4.73bc | 62.50±5.95abc | 0.68±0.06c | 0.81±0.21bc | 0.88±0.24a |
Group 4 | 40.00±4.08d | 18.75±1.25d | 20.00±2.89c | 60.00±4.08ab | 0.79±0.04c | 1.38±0.29c | 0.80±0.32a |
Group 5 | 67.50±4.79e | 16.25±3.75cd | 2.50±1.44a | 32.50±4.79a | 0.86±0.02c | 2.30±0.42d | 1.88±0.77ab |
Group 6 | 12.50±2.50abc | 5.00±.01ab | 7.50±3.23ab | 87.50±2.50bc | 0.28±0.04ab | 0.13±0.03ab | 3.50±0.71b |
Group 7 | 5.00±2.04a | 3.75±1.25a | 6.25±2.39ab | 70.00±23.36bc | 0.14±0.06a | 0.06±0.25a | 3.65±0.75b |
Group 8 | 4.25±0.75a | 2.50±1.44a | 5.75±2.17ab | 95.75±0.75c | 0.13±0.03a | 0.05±0.01a | 2.40±0.33ab |
Group 9 | 25.00±6.45bcd | 6.25±1.25ab | 6.25±1.25ab | 75.00±6.45bc | 0.38±0.05b | 0.21±0.04ab | 2.28±0.30ab |
Group 10 | 16.25±2.39abc | 10.00±0.01abcd | 8.75±1.25abc | 83.75±2.39bc | 0.35±0.02b | 0.18±0.02ab | 3.13±0.32ab |
Group 11 | 6.25±1.25a | 13.75±2.39bcd | 11.25±3.15abc | 93.75±1.25bc | 0.31±0.04ab | 0.16±0.03ab | 2.70±0.12ab |
Group 12 | 7.50±1.44ab | 10.00±0.01abcd | 7.50±1.44ab | 92.50±1.44bc | 0.25±0.03ab | 0.11±0.02ab | 2.78±0.48ab |
Group 13 | 8.75±2.39ab | 11.25±1.25abcd | 7.50±1.46ab | 91.25±2.39bc | 0.28±0.03ab | 0.13±0.02ab | 2.76±0.47ab |
Group 14 | 8.75±2.39ab | 8.75±1.25abc | 10.00±0.02ab | 91.25±2.38bc | 0.28±0.01ab | 0.13±0.01ab | 3.15±0.65ab |
Group 15 | 5.00±2.04a | 7.50±3.23abc | 2.50±1.45a | 95.00±2.04bc | 0.13±0.06a | 0.06±0.03a | 3.35±0.39b |
F- value | 25.98 | 7.37 | 4.04 | 6.34 | 30.38 | 19.14 | 3.56 |
P-value | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Groups | Gonadosomatic index (%) |
---|---|
Group 1 | 6.10±0.09bc |
Group 2 | 3.72±0.25ab |
Group 3 | 2.49±0.38a |
Group 4 | 1.44±0.26a |
Group 5 | 1.18±0.13a |
Group 6 | 6.01±1.04bc |
Group 7 | 5.97±0.33bc |
Group 8 | 10.63±1.53d |
Group 9 | 3.11±0.22ab |
Group 10 | 2.89±0.39ab |
group 11 | 3.18±0.71ab |
Group 12 | 8.55±1.36cd |
Group 13 | 3.22±0.27ab |
Group 14 | 3.29±0.20ab |
Group 15 | 2.56±0.26a |
F- value | 16.04 |
P-value | 0.001 |
Groups | MDA (Umol/gProtein | SOD (U/mg protein) | GPX (U/mg protein) | CAT (Umol/H202/min/mg protein |
---|---|---|---|---|
Group 1 | 0.33±0.19ab | 20.24±5.19c | 209.50±59.73bc | 1245.45±349.39c |
Group 2 | 3.18±0.38c | 1.90±0.25a | 30.39±10.71a | 92.08±8.04ab |
Group 3 | 2.55±0.51c | 1.17±0.12a | 13.39±1.22a | 56.23±17.14ab |
Group 4 | 2.39±0.82bc | 0.80±0.25a | 13.93±3.16a | 25.19±7.30a |
Group 5 | 5.99±0.82d | 0.60±0.19a | 12.56±3.72a | 28.50±6.26a |
Group 6 | 0.15±0.09a | 11.14±0.72abc | 184.59±53.58abc | 1047.95±318.23bcd |
Group 7 | 0.09±0.05a | 19.22±5.89c | 188.41±36.96abc | 1229.98±343.91c |
Group 8 | 0.14±0.07a | 18.58±2.76bc | 275.60±46.99c | 1086.39±309.51cd |
Group 9 | 1.28±0.55abc | 13.21±4.49abc | 179.04±74.55abc | 130.43±28.15abc |
Group 10 | 1.23±0.19abc | 10.80±6.40abc | 119.37±19.66abc | 68.28±12.18ab |
group 11 | 1.60±0.46abc | 2.45±1.06ab | 54.36±25.29ab | 77.81±16.88ab |
Group 12 | 0.19±0.09a | 15.81±1.79abc | 277.99±26.12c | 1273.62±315.53c |
Group 13 | 1.07±0.24abc | 10.43±2.77abc | 133.73±13.15abc | 628.03±120.96abcd |
Group 14 | 1.23±0.32abc | 8.69±2.68abc | 133.84±22.58abc | 700.61±74.54abcd |
Group 15 | 1.57±0.32abc | 7.38±3.26abc | 125.80±14.06abc | 430.51±129.67abcd |
F- value | 13.81 | 4.58 | 6.73 | 6.85 |
P-value | 0.001 | 0.001 | 0.001SS | 0.001 |
Groups | Protein (mg) | Acrosin (pg/ml) | CLU (ng/ml) | KLK-1 (pg/ml) | OPN (ng/ml) | ANXA2 (pg/ml) |
---|---|---|---|---|---|---|
Group 1 | 5.84±1.05cde | 1200.00±204.12cd | 90.50±2.90bcd | 987.50±82.60c | 31.93±2.36cd | 307.28±52.73cde |
Group 2 | 0.94±0.13ab | 587.50±106.80ab | 29.25±4.03ab | 375.00±52.04ab | 10.76±2.08a | 98.98±20.95abcd |
Group 3 | 0.16±0.09a | 212.50±77.39a | 15.00±2.04a | 120.00±40.82a | 15.44±2.04ab | 50.18±17.69a |
Group 4 | 0.74±0.22a | 81.25±46.99a | 10.00±1.87a | 50.00±18.71a | 13.73±3.63ab | 50.05±4.07a |
Group 5 | 0.32±0.09a | 40.25±24.68a | 3.00±1.78a | 8.75±5.09a | 10.24±3.49a | 44.18±13.03a |
Group 6 | 6.40±1.19de | 1500.00±204.12de | 152.63±12.20de | 1412.50±82.60d | 47.58±3.78e | 325.10±66.40de |
Group 7 | 8.76±0.76e | 1900.00±212.13e | 212.75±31.90e | 1862.50±224.88e | 48.87±3.99e | 332.75±102.46de |
Group 8 | 6.82±0.67de | 875.00±52.04bc | 130.44±26.25d | 625.00±87.79bc | 43.99±4.48de | 358.82±69.87e |
Group 9 | 1.14±0.41ab | 600.00±45.64ab | 35.00±6.77ab | 205.00±69.10a | 16.57±3.04ab | 296.95±57.62bcde |
Group 10 | 2.09±0.93ab | 89.50±40.58a | 13.00±2.65a | 53.75±19.83a | 9.09±3.11a | 84.38±7.35abc |
group 11 | 2.36±0.98abc | 39.50±20.84a | 7.00±0.91a | 11.25±6.57a | 9.23±1.55a | 65.84±10.36ab |
Group 12 | 6.72±1.02de | 1375.00±125.00cde | 106.75±14.64cd | 912.50±59.07c | 45.99±2.59de | 334.19±71.68de |
Group 13 | 2.72±0.53abc | 912.50±42.69bc | 66.25±13.13abc | 362.50±121.41ab | 21.52±2.41abc | 73.37±23.48abc |
Group 14 | 4.47±0.63bcd | 235.00±114.35a | 17.00±2.79a | 65.00±22.17a | 26.86±1.06bc | 65.17±16.19ab |
Group 15 | 2.33±0.67abc | 37.75±16.11a | 9.50±0.96a | 13.75±8.00a | 19.64±2.76abc | 81.45±11.90abc |
F- value | 15.18 | 30.84 | 26.91 | 49.74 | 25.78 | 7.90 |
P-value | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
Parameters | r- value | p-value | Parameters | r- value | p-value |
---|---|---|---|---|---|
Acrosin/sperm count | 0.502 | 0.001 | Osteopontin/sperm count | 0.579 | 0.001 |
Acrosin/Active motility | 0.422 | 0.001 | Osteopontin/Active motility | 0.516 | 0.001 |
Acrosin/viable sperm cells | 0.250 | 0.054 | Osteopontin/viable sperm cells | 0.328 | 0.010 |
Acrosin/normal morphology | 0.441 | 0.001 | Osteopontin/normal morphology | 0.496 | 0.001 |
Acrosin/acrosomal index | 0.202 | 0.121 | Osteopontin/acrosomal index | 0.301 | 0.020 |
Acrosin/sperm deformity index | -0.441 | 0.001 | Osteopontin/sperm deformity index | -0.496 | 0.001 |
Acrosin/Teratozoospermic index | -0.388 | 0.002 | Osteopontin/Teratozoospermic index | -0.348 | 0.006 |
Clusterin/sperm count | 0.565 | 0.001 | Annexin A2 /sperm count | 0.414 | 0.001 |
Clusterin/Active motility | 0.476 | 0.001 | Annexin A2/Active motility | 0.354 | 0.005 |
Clusterin/viable sperm cells | 0.325 | 0.011 | Annexin A2/viable sperm cells | 0.236 | 0.070 |
Clusterin/normal morphology | 0.485 | 0.001 | Annexin A2/normal morphology | 0.380 | 0.003 |
Clusterin/acrosomal index | 0.143 | 0.276 | Annexin A2/acrosomal index | 0.275 | 0.034 |
Clusterin/sperm deformity index | -0.485 | 0.001 | Annexin A2/sperm deformity index | -0.380 | 0.003 |
Clusterin/Teratozoospermic index | -0.361 | 0.005 | Annexin A2/Teratozoospermic index | -0.556 | 0.001 |
Kallikrein-1/sperm count | 0.566 | 0.001 | |||
Kallikrein-1/Active motility | 0.401 | 0.001 | |||
Kallikrein-1/viable sperm cells | 0.252 | 0.052 | |||
Kallikrein-1/normal morphology | 0.407 | 0.001 | |||
Kallikrein -1/acrosomal index | 0.172 | 0.189 | |||
Kallikrein-1/sperm deformity index | -0.407 | 0.001 | |||
Kallikrein-1/Teratozoospermic index | -0.330 | 0.010 |
Parameters | r- value | p-value | Parameters | r- value | p-value |
---|---|---|---|---|---|
MDA/sperm count | -0.591 | 0.001 | GPX/sperm count | 0.444 | 0.001 |
MDA/Active motility | -0.680 | 0.001 | GPX/Active motility | 0.594 | 0.001 |
MDA/viable sperm cells | -0.622 | 0.001 | GPX/viable sperm cells | 0.421 | 0.001 |
MDA/normal morphology | -0.667 | 0.001 | GPX/normal morphology | 0.582 | 0.001 |
MDA/acrosomal index | -0.554 | 0.001 | GPX/acrosomal index | 0.359 | 0.005 |
MDA/sperm deformity index | 0.667 | 0.001 | GPX/sperm deformity index | -0.582 | 0.001 |
MDA/Teratozoospermic index | 0.687 | 0.001 | GPX/Teratozoospermic index | -0.475 | 0.001 |
SOD/sperm count | 0.418 | 0.001 | CAT/sperm count | 0.516 | 0.001 |
SOD/Active motility | 0.513 | 0.001 | CAT/Active motility | 0.540 | 0.001 |
SOD/viable sperm cells | 0.381 | 0.003 | CAT/viable sperm cells | 0.341 | 0.008 |
SOD/normal morphology | 0.478 | 0.001 | CAT/normal morphology | 0.519 | 0.001 |
SOD/acrosomal index | 0.092 | 0.486 | CAT/acrosomal index | 0.247 | 0.057 |
SOD/sperm deformity index | -0.478 | 0.001 | CAT/sperm deformity index | -0.519 | 0.001 |
SOD/Teratozoospermic index | -0.410 | 0.001 | CAT/Teratozoospermic index | -0.386 | 0.002 |
Parameters | r- value | p-value |
---|---|---|
Acrosomal index/sperm count | 0.408 | 0.001 |
Acrosomal index/Active motility | 0.640 | 0.001 |
Acrosomal index/viable sperm cells | 0.574 | 0.001 |
Acrosmal index/normal morphology | 0.667 | 0.001 |
Sperm deformity index/sperm count | -0.606 | 0.001 |
Sperm deformity index/Active motility | -0.874 | 0.001 |
Sperm deformity index/viable sperm cells | -0.715 | 0.001 |
Sperm deformity index/normal morphology | -1.000 | 0.001 |
Teratozospermic index/sperm count | -0.493 | 0.001 |
Teratozospermic index/Active motility | -0.733 | 0.003 |
Teratozospermic index/viable sperm cells | -0.628 | 0.001 |
Teratozospermic index/normal morphology | -0.862 | 0.001 |
Parameters | r- value | p-value |
---|---|---|
MDA/acrosin | -0.530 | 0.001 |
MDA/clusterin | -0.535 | 0.001 |
MDA/kallikrein-1 | -0.507 | 0.001 |
MDA/osteopontin | -0.602 | 0.001 |
GPX/acrosin | 0.492 | 0.001 |
GPX/clusterin | 0.561 | 0.001 |
GPX/kallikrein-1 | 0.452 | 0.001 |
GPX/osteopontin | 0.639 | 0.001 |
SOD/acrosin | 0.543 | 0.001 |
SOD/clusterin | 0.572 | 0.001 |
SOD/kallikrein-1 | 0.491 | 0.001 |
SOD/osteopontin | 0.536 | 0.001 |
CAT/acrosin | 0.716 | 0.001 |
CAT/clusterin | 0.708 | 0.001 |
CAT/kallikrein-1 | 0.634 | 0.001 |
CAT/osteopontin | 0.686 | 0.001 |
SC | Sperm Count |
AM | Active motility |
SM | Sluggish Motility |
NVSC | Non Viable Sperm Cell |
VSC | Viable Sperm Cell |
NM | Normal Morphology |
ABM | Abnormal Morphology |
SOD | Superoxide Dismutase |
CAT | Catalase |
GPx | Gluthanione Peroxidase |
CLU | Clusterin |
OPN | Osteopontin |
ANXA2 | Annexin-a2 |
KLK-1 | Kallikrein-1 |
Cd | Cadmium |
NF-κB | Nuclear Factor-kappa b |
AP-1 | Activator Protein-1 |
ELISA | Enzyme Linked Immunoassay |
TZI | Teratozospermic Index |
SDI | Sperm Deformity Index |
Sem | Standard Error of Mean |
ANOVA | Analysis of Variance |
[1] | Abarikwu SO. Toxic effects of cadmium on mammalian reproduction and the male reproductive system: A review. Toxicology Research and Application. 2013; 2: 1-14. |
[2] | Chen Q, Jin J, He J, Wang S, Li M, Wang H. Mechanisms of cadmium-induced testicular toxicity: Oxidative stress, apoptosis, and autophagy. Environ Pollut. 2021; 273: 116462. |
[3] | Rani A, Kumar A, Lal A, Pant M. Cellular mechanisms of cadmium-induced toxicity: a review. Int J Environ Health Res. 2014; 24(4): 378-399. |
[4] | Akinloye O, Arowojolu AO, Shittu OB, Anetor JI. Cadmium toxicity: a possible cause of male infertility in Nigeria. Reprod Biol. 2006; 6(1): 17-30. |
[5] | Ikokide EJ, Oyagbemi AA, Oyeyemi MO. Impacts of cadmium on male fertility: Lessons learnt so far. Andrologia. 2022; 54(9): e14516. |
[6] | Bhardwaj JK, Siwach A, Sachdeva D, Sachdeva SN. Revisiting cadmium-induced toxicity in the male reproductive system: An update. Arch Toxicol. 2024; 98(11): 3619-3639. |
[7] | Kumar S, Singh A. Genetic causes of male infertility: A review. Hum Reprod Update. 2020; 28(1): 15-30. |
[8] | Zhang Y, Wang H. The role of reactive oxygen species in cadmium-induced cell death: A review. Toxicol Lett. 2020; 323: 1-10. |
[9] | Zhao X, Cheng Z, Zhu YI, Li S, Zhang L, Luo Y. Effects of paternal cadmium exposure on the sperm quality of male rats and the neurobehavioral system of their offspring. Exp Ther Med. 2015; 10(6): 2356-2360. |
[10] | He Y, Zou L, Luo W, Yi Z, Yang P, Yu S, Liu N, Ji J, Guo Y, Liu P, He X, Lv Z, Huang S. Heavy metal exposure, oxidative stress and semen quality: Exploring associations and mediation effects in reproductive-aged men. Chemosphere. 2020; 244: 125498. |
[11] | Ogunbiyi OJ, Obi FO. Evaluation of cadmium toxicity and its association with iron on the gonads of female rats. Niger Soc Exp Biol. 2021; 33(3): 795-808. |
[12] | World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: WHO; 2021. |
[13] | Zemjanis R. Collection and evaluation of semen. In: Zemjanis R, editor. Diagnostic and therapeutic techniques in animal reproduction. Baltimore: William and Wilkins; 1977. p. 242. |
[14] | Narayana K, Prashanthi N, Nayanatara A, Kumar HH, Abhilash K, Bairy KL. Effects of methyl parathion (o,o-dimethyl o-4-nitrophenyl phosphorothioate) on rat sperm morphology and sperm count, but not fertility, are associated with decreased ascorbic acid level in the testis. Mutat Res. 2005; 588: 28-34. |
[15] | Sinha AK. Colorimetric assay of catalase. Anal Biochem. 1972; 47: 389-394. |
[16] | Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: Biochemical role as a component of glutathione peroxidase. Science. 1973; 179: 588-590. |
[17] | Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974; 47: 469-474. |
[18] | Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979; 95: 351-358. |
[19] | Blanco A, Moyano R, Vivo J. Quantitative changes in the testicular structure in mice exposed to low doses of cadmium. Environ Toxicol Pharmacol. 2007; 23: 96-101. |
[20] | Shivtia TS, Michael G, Yehudith A, Rachel KL, Eliyahu MH. Effect of omega-3 supplements or diets on fertility in women: A meta-analysis. Heliyon. 2024; 10(8): e29324. |
[21] | Stanhiser J, Jukic AMZ, McConnaughey DR, Steiner AZ. Omega-3 fatty acid supplementation and fecundability. Hum Reprod. 2022; 37(5): 1037-1046. |
[22] | Ige SF, Olaleye SB, Akhigbe RE, Akanbi TA, Oyekunle OA, Udoh UA. Testicular toxicity and sperm quality following cadmium exposure in rats: Ameliorative potentials of Allium cepa. J Hum Reprod Sci. 2012; 5: 37-42. |
[23] | Ekhoye EI, Nwangwa EK, Aloamaka CP. Changes in some testicular biometric parameters and testicular function in cadmium chloride administered Wistar rats. Br J Med Health Res. 2013; 3: 2031-2041. |
[24] | Akunna GG, Saalu LC, Ogunlade B, Enye LA. Spermatotoxicity in animal models exposed to fragrance components. J Med Sci. 2014; 14: 46-50. |
[25] | Yang HS, Han DK, Kim JR, Sim JC. Effects of α-Tocopherol on cadmium-induced toxicity in rat testis and spermatogenesis. J Korean Med Sci. 2006; 21: 445-455. |
[26] | Ali W, Bian Y, Ali H, Sun J, Zhu J, Ma Y, Liu Z, Zou H. Cadmium-induced impairment of spermatozoa development by reducing exosomal-MVBs secretion: A novel pathway. Aging (Albany NY). 2023; 15(10): 4096-4107. |
[27] | Zelen I, Mitrovic M, Jurisic-Skevin A, Arsenijevic S. Activity of superoxide dismutase and catalase and content of malondialdehyde in seminal plasma of infertile patients. Med Pregl. 2010; 63: 234-245. |
[28] | Otamere HO, Akpamu U, Adisa WA, Shelu OJ, Imhantabhunu ES. Oxidative stress in testis of rats exposed to cadmium. Afr J Biomed Res. 2023; 26(1): 96-104. |
[29] | Motahareh B, Haidar A, Seyed EH, Saeed CA. Effects of walnut oil on plasma levels of testosterone pre and post puberty in male rats. Am J Ethnomed. 2014; 4: 266-275. |
[30] | Safarinejad MR. The effect of omega-3 fatty acids on semen quality and fertility in men: A systematic review and meta-analysis. J Diet Suppl. 2015; 12(3): 245-256. |
[31] | Agarwal A. Oxidative stress and its implications in male infertility: A systematic review. World J Mens Health. 2016; 34(1): 1-12. |
[32] | Gonzalez CA, Rojas J. Omega-3 fatty acids and their role in male fertility: A review. Reprod Biol Endocrinol. 2018; 16(1): 1-10. |
[33] | Milardi D, Pirotta M, Gallo A. Clusterin: A key player in male fertility and semen liquefaction. Sci Rep. 2022; 12(1): 1-12. |
[34] | Frapsauce C, Pionneau C, Bouley J, Delarouziere V, Berthaut I, Ravel C, Soubrier F. Proteomic identification of target proteins in normal but nonfertilizing sperm. Fertil Steril. 2014; 102(2): 372-380. |
[35] | Ghosh P, Dutta S, Mukherjee S. Cadmium exposure and male reproductive health: A review of epidemiological studies. Environ Res. 2020; 182: 109071. |
[36] | Zhu Q, Li X, Ge RS. Toxicological effects of cadmium on mammalian testis. Front Genet. 2020; 11: 527. |
[37] | Zhao Y. Effects of environmental pollutants on reproductive health: A study on coiled tail anomalies in Wistar rats. Environ Toxicol Pharmacol. 2021; 82: 103511. |
[38] | Abedin SN, Leela V, Devendran P, Suganya G, Rangasamy S, Loganathasamy K. Seminal plasma osteopontin: A marker for potential fertility in dogs. Indian J Anim Res. 2021; 55: 758-762. |
[39] | de Franciscis P. Cadmium as a potential factor of male infertility. Minerva Urol Nefrol. 2015; 67(3): 241-246. |
[40] | Sinha R, Kumar S, Sharma R. Impacts of cadmium on male fertility: Lessons learnt so far. Environ Toxicol Pharmacol. 2020; 79: 103371. |
[41] | sJones B, Brown C, Smith A. Omega-3 fatty acids modulate immune function and inflammation in response to cadmium exposure. J Nutr Biochem. 2017; 30(2): 89-95. |
APA Style
Oyakhire, F. O., Emokpae, M. A., Esezobor, K. I., Adejumo, B. I. G., Efenarhua, S., et al. (2025). Omega-3 Fatty Acids as a Novel Antioxidant Strategy Against Cadmium-induced Testicular Dysfunction: A Proteomic Approach. Pathology and Laboratory Medicine, 9(1), 12-31. https://doi.org/10.11648/j.plm.20250901.12
ACS Style
Oyakhire, F. O.; Emokpae, M. A.; Esezobor, K. I.; Adejumo, B. I. G.; Efenarhua, S., et al. Omega-3 Fatty Acids as a Novel Antioxidant Strategy Against Cadmium-induced Testicular Dysfunction: A Proteomic Approach. Pathol. Lab. Med. 2025, 9(1), 12-31. doi: 10.11648/j.plm.20250901.12
@article{10.11648/j.plm.20250901.12, author = {Fidelis Ohiremen Oyakhire and Mathias Abiodun Emokpae and Kelly Iria Esezobor and Babatunde Ishola Gabriel Adejumo and Samson Efenarhua and Juliana Edusola Olaniyan and Emmanuel Onosetale Afeikhena and Adolphus Osakpolor Ogbebor and Aigbokan Akhere Caleb and Eboselume Osamudiamen Joshua and Vani Onotinamhe Usman-Onoruvie and Patricia Ejenawome Dele-Ochie and Grace Eleojo Obasuyi and Basheer Madompoyil and Sadeeq Abdulsalam}, title = {Omega-3 Fatty Acids as a Novel Antioxidant Strategy Against Cadmium-induced Testicular Dysfunction: A Proteomic Approach }, journal = {Pathology and Laboratory Medicine}, volume = {9}, number = {1}, pages = {12-31}, doi = {10.11648/j.plm.20250901.12}, url = {https://doi.org/10.11648/j.plm.20250901.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.plm.20250901.12}, abstract = {Background: Cadmium-induced reproductive toxicity significantly threatens male fertility, primarily through oxidative stress and alterations in testicular proteins. Objective: This study investigates omega-3 fatty acids as a potential therapeutic strategy to counteract cadmium-induced testicular damage. Methods Adult male Wistar rats were exposed to cadmium chloride, followed by oral omega-3 fatty acid supplementation. Testicular tissues were analyzed for oxidative stress markers (malondialdehyde, MDA), antioxidant enzyme activities (Superoxide dismutase (SOD), catalase (CAT), gluthanione peroxidase (GPx), and key reproductive proteins (acrosin, clusterin, osteopontin, annexin-A2, kallikrein-1) using) enzyme linked immunoassay (ELISA and spectrophotometry. Data were analyzed using appropriate statistical tools. Results: Omega-3 supplementation significantly (p Conclusion: These findings suggest that omega-3 fatty acids may serve as a promising therapeutic agent for mitigating cadmium-induced reproductive toxicity and preserving male fertility. Incorporating omega-3 into dietary interventions may offer an effective strategy against heavy metal-induced testicular damage.}, year = {2025} }
TY - JOUR T1 - Omega-3 Fatty Acids as a Novel Antioxidant Strategy Against Cadmium-induced Testicular Dysfunction: A Proteomic Approach AU - Fidelis Ohiremen Oyakhire AU - Mathias Abiodun Emokpae AU - Kelly Iria Esezobor AU - Babatunde Ishola Gabriel Adejumo AU - Samson Efenarhua AU - Juliana Edusola Olaniyan AU - Emmanuel Onosetale Afeikhena AU - Adolphus Osakpolor Ogbebor AU - Aigbokan Akhere Caleb AU - Eboselume Osamudiamen Joshua AU - Vani Onotinamhe Usman-Onoruvie AU - Patricia Ejenawome Dele-Ochie AU - Grace Eleojo Obasuyi AU - Basheer Madompoyil AU - Sadeeq Abdulsalam Y1 - 2025/08/07 PY - 2025 N1 - https://doi.org/10.11648/j.plm.20250901.12 DO - 10.11648/j.plm.20250901.12 T2 - Pathology and Laboratory Medicine JF - Pathology and Laboratory Medicine JO - Pathology and Laboratory Medicine SP - 12 EP - 31 PB - Science Publishing Group SN - 2640-4478 UR - https://doi.org/10.11648/j.plm.20250901.12 AB - Background: Cadmium-induced reproductive toxicity significantly threatens male fertility, primarily through oxidative stress and alterations in testicular proteins. Objective: This study investigates omega-3 fatty acids as a potential therapeutic strategy to counteract cadmium-induced testicular damage. Methods Adult male Wistar rats were exposed to cadmium chloride, followed by oral omega-3 fatty acid supplementation. Testicular tissues were analyzed for oxidative stress markers (malondialdehyde, MDA), antioxidant enzyme activities (Superoxide dismutase (SOD), catalase (CAT), gluthanione peroxidase (GPx), and key reproductive proteins (acrosin, clusterin, osteopontin, annexin-A2, kallikrein-1) using) enzyme linked immunoassay (ELISA and spectrophotometry. Data were analyzed using appropriate statistical tools. Results: Omega-3 supplementation significantly (p Conclusion: These findings suggest that omega-3 fatty acids may serve as a promising therapeutic agent for mitigating cadmium-induced reproductive toxicity and preserving male fertility. Incorporating omega-3 into dietary interventions may offer an effective strategy against heavy metal-induced testicular damage. VL - 9 IS - 1 ER -